Learn more about electricity production from the U. Department of Energy's Energy Information Administration. Electricity in the United States often travels long distances from generating facilities to local distribution substations through a transmission grid of nearly , miles of high-voltage transmission lines.
Generating facilities provide power to the grid at low voltage, from volts V in small generating facilities to 22 kilovolts kV in larger power plants. Once electricity leaves a generating facility, the voltage is increased, or "stepped up," by a transformer typical ranges of kV to kV to minimize the power losses over long distances. As electricity is transmitted through the grid and arrives in the load areas, the voltage is stepped down by substation transformers ranges of 69 kV to 4.
All-electric vehicles and plug-in hybrid electric vehicles represent a new demand for electricity, but they are not likely to strain much of our existing generation resources in the near term. Large increases in the number of these vehicles in the United States will not necessarily require the addition of new electricity-generation capacity depending on when, where, and at what power level the vehicles are charged.
Demand for electricity rises and falls, depending on time of day and time of year. Electricity production, transmission, and distribution capacity must be able to meet demand during times of peak use; but most of the time, the electricity infrastructure is not operating at its full capacity.
According to deployment models developed by researchers at the National Renewable Energy Laboratory NREL , the diversity of household electricity loads and EV loads should allow introduction and growth of the PEV market while "smart grid" networks expand. Smart grid networks allow for two-way communication between the utility and its customers, and sensing along transmission lines through smart meters, smart appliances, renewable energy resources, and energy efficient resources.
Distributed generation may serve a single structure, such as a home or business, or it may be part of a microgrid a smaller grid that is also tied into the larger electricity delivery system , such as at a major industrial facility, a military base, or a large college campus.
The use of distributed generation units in the United States has increased for a variety of reasons, including:. Distributed generation systems are subject to a different mix of local, state, and federal policies, regulations, and markets compared with centralized generation. As policies and incentives vary widely from one place to another, the financial attractiveness of a distributed generation project also varies.
As electric utilities integrate information and communications technologies to modernize electricity delivery systems , there may be opportunities to reliably and cost-effectively increase the use of distributed generation.
Forms of energy Sources of energy Laws of energy. Also in Units and calculators explained Units and calculators Energy conversion calculators British thermal units Btu Degree days. Also in U. Also in Use of energy explained Use of energy Energy use in industry Energy use for transportation Energy use in homes Energy use in commercial buildings Energy efficiency and conservation. Also in Energy and the environment explained Energy and the environment Greenhouse gases Greenhouse gases and the climate Where greenhouse gases come from Outlook for future emissions Recycling and energy.
Nonrenewable sources. Oil and petroleum products. Diesel fuel. Heating oil. Also in Oil and petroleum products explained Oil and petroleum products Refining crude oil Where our oil comes from Imports and exports Offshore oil and gas Use of oil Prices and outlook Oil and the environment.
Also in Gasoline explained Gasoline Octane in depth Where our gasoline comes from Use of gasoline Prices and outlook Factors affecting gasoline prices Regional price differences Price fluctuations History of gasoline Gasoline and the environment. Also in Diesel fuel explained Diesel fuel Where our diesel comes from Use of diesel Prices and outlook Factors affecting diesel prices Diesel fuel surcharges Diesel and the environment.
Also in Heating oil explained Heating oil Where our heating oil comes from Use of heating oil Prices and outlook Factors affecting heating oil prices. Hydrocarbon Gas Liquids. Natural gas. Also in Hydrocarbon gas liquids explained Hydrocarbon gas liquids Where do hydrocarbon gas liquids come from? Transporting and storing Uses of hydrocarbon gas liquids Imports and exports Prices. Also in Natural gas explained Natural gas Delivery and storage Natural gas pipelines Liquefied natural gas Where our natural gas comes from Imports and exports How much gas is left Use of natural gas Prices Factors affecting natural gas prices Natural gas and the environment Customer choice programs.
Also in Coal explained Coal Mining and transportation Where our coal comes from Imports and exports How much coal is left Use of coal Prices and outlook Coal and the environment. Renewable sources. Renewable energy. Biofuels: Ethanol and Biomass-based diesel. Also in Hydropower explained Hydropower Where hydropower is generated Hydropower and the environment Tidal power Wave power Ocean thermal energy conversion. Also in Biofuels explained Biofuels Ethanol Use and supply of ethanol Ethanol and the environment Biomass-based diesel fuels Use of biomass-based diesel fuel Biomass-based diesel and the environment.
Also in Wind explained Wind Electricity generation from wind Where wind power is harnessed Types of wind turbines History of wind power Wind energy and the environment. Also in Geothermal explained Geothermal Where geothermal energy is found Use of geothermal energy Geothermal power plants Geothermal heat pumps Geothermal energy and the environment. Also in Solar explained Solar Photovoltaics and electricity Where solar is found and used Solar thermal power plants Solar thermal collectors Solar energy and the environment.
Secondary sources. Also in Electricity explained Electricity The science of electricity Magnets and electricity Batteries, circuits, and transformers Measuring electricity How electricity is generated Electricity in the United States Generation, capacity, and sales Delivery to consumers Use of electricity Prices and factors affecting prices Electricity and the environment.
Also in Hydrogen explained Hydrogen Production of hydrogen Use of hydrogen.
0コメント